Average RHIC P.S. Failure Hours per Week (Peter Ingrassia)

	fy01-fy02	fy03	fy04	fy05	fy06	
	18.28	4.36	3.29	2.4	to be determined	

Notes:

Lower the number, the better

MTBF of RHIC due to Power Supply Failure

	HERE e+p 1996 (comparison only)	RHIC Run 4	RHIC Run 5	RHIC Run 6
MTBF_M (hours)	22.3	20.48	30.79	40.02
Number of Problems	238	148	138	62

Higher the number, the better.

 $\begin{array}{ccc} \mathsf{MTBF_RHIC} &= & \underline{\mathsf{MT}} \\ & & \mathsf{NOF} \end{array}$

What would be the %AV of RHIC if only RHIC PS Failures

	HERE e+p 1996 (comparison only)	RHIC Run 4	RHIC Run 5	RHIC Run 6
AV%	96.6	91.97	97.09	96.74
Number of Problems	238	148	138	62

Higher the number, the better.

 $AV\% = \frac{[MT - (NOF \times TOR)]}{MT} \times 100$

MTBF of an Individual Power Supply System Failure

	HERE e+p 1996 (comparison only)	RHIC Run 4	RHIC Run 5	RHIC Run 6
MTBF (hours)	29310	19106	27989	37338
Number of P.S.'s	1166	909	909	933

Higher the number, the better.

 $MTBF_RHIC PS = (MT \times NOPS)$ NOF